metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dihydroxidobis(melamine-*kN*)zinc(II) monohydrate

Guo-wei Wang,* Wen-yuan Wu and Ling-hua Zhuang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: kingwell2004@sina.com.cn

Received 5 September 2007; accepted 14 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (N–C) = 0.010 Å; R factor = 0.053; wR factor = 0.143; data-to-parameter ratio = 9.3.

In the title compound, dihydroxidobis(2,4,6-triamino-1,3,5-triazine- κN)zinc(II) monohydrate, [Zn(OH)₂(C₃N₆H₆)₂]-H₂O, Zn^{II} is tetrahedrally coordinated by two melamine and two hydroxy groups; there is also a solvent water molecule. The dihedral angle between the two melamine rings is 86.3 (9)°. Intramolecular N-H···O and N-H···N hydrogen bonds help to stabilize the molecular conformation. Numerous intermolecular hydrogen bonds between water, hydroxy and melamine groups link the molecules into a three-dimensional supramolecular network.

Related literature

For general background, see: Ford *et al.* (1999); Tandon *et al.* (1994); Zhu *et al.* (1999). For a related structure, see: Yu *et al.* (2004). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data $[Zn(OH)_2(C_3N_6H_6)_2] \cdot H_2O$ $M_r = 369.70$ Orthorhombic, $Pna2_1$

a = 17.531 (4) Åb = 6.6251 (13) Åc = 11.335 (2) Å $V = 1316.5 (5) \text{ Å}^{3}$ Z = 4Mo *K*\alpha radiation

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.508, T_{\max} = 0.657$ 3467 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.143$ S = 1.091843 reflections 199 parameters 1 restraint

$$\begin{split} \mu &= 1.91 \ {\rm mm}^{-1} \\ T &= 293 \ (2) \ {\rm K} \\ 0.40 \ \times \ 0.40 \ \times \ 0.22 \ {\rm mm} \end{split}$$

1843 independent reflections 1682 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ 3 standard reflections every 200 reflections intensity decay: none

H-atom parameters constrained $\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 636 Friedel pairs Flack parameter: 0.06 (3)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O2$	0.86	2.44	3.221 (11)	151
$N2 - H2B \cdot \cdot \cdot N9^{i}$	0.86	2.01	2.865 (9)	174
$N4-H4A\cdotsO1^{ii}$	0.86	2.37	3.120 (8)	146
$N4 - H4B \cdot \cdot \cdot O2^{iii}$	0.86	2.29	3.089 (11)	156
$N6-H6A\cdots O1$	0.86	2.14	2.921 (10)	151
$N6-H6B\cdots O3^{iv}$	0.86	1.91	2.670 (9)	146
$N8 - H8A \cdots N1$	0.86	2.30	3.070 (12)	150
$N8 - H8B \cdot \cdot \cdot O3^{v}$	0.86	2.03	2.674 (9)	131
$N10-H10A\cdots O2^{vi}$	0.86	2.34	3.057 (11)	141
$N10-H10B\cdots N3^{v}$	0.86	1.97	2.826 (9)	176
$N12 - H12A \cdots O1$	0.86	2.31	3.111 (10)	155
$N12-H12B\cdots N5^{vii}$	0.86	2.29	2.849 (9)	123
O1−H1···O3 ^{viii}	0.84	2.46	3.209 (14)	150
$O2-H2 \cdot \cdot \cdot N8^{ix}$	0.84	2.60	3.288 (10)	139
$O3-H3A\cdots N11^{x}$	0.84	2.43	2.770 (9)	105
$O3-H3B\cdots N11^{x}$	0.84	2.23	2.770 (9)	122

Symmetry codes: (i) -x + 2, -y + 1, $z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{5}{2}$, z; (iii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, z; (iv) -x + 2, -y + 2, $z - \frac{1}{2}$; (v) -x + 2, -y + 1, $z - \frac{1}{2}$; (vi) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $z - \frac{1}{2}$; (vi) $x - \frac{1}{2}$, $-y + \frac{5}{2}$, z; (viii) x, y + 1, z; (ix) -x + 2, -y + 2, $z + \frac{1}{2}$; (x) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $z - \frac{1}{2}$; (vii) $x - \frac{1}{2}$, $-y + \frac{5}{2}$, z; (viii) x, y + 1, z; (ix) -x + 2, -y + 2, $z + \frac{1}{2}$; (x) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2228).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Ford, P. C., Cariati, E. & Bourassa, J. (1999). *Chem. Rev.* **99**, 3625–3648. Harms, K. & Wocadlo, S. (1995). *XCAD4*. University of Marburg, Germany.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Tandon, S. S., Chen, L.-Q., Thompson, L. K. & Bridson, J. N. (1994). Inorg. Chem. 33, 490–497.
- Yu, Y.-Q., Lu, C.-Z., He, X., Chen, S.-M., Zhang, Q.-Z., Chen, L.-J. & Yang, W.-B. (2004). J. Chem. Crystallogr. 34, 905–909.
- Zhu, H.-G., Yu, Z., You, X.-Z., Hu, H.-M. & Huang, X.-Y. (1999). J. Chem. Crystallogr. 29, 239–242.

supplementary materials

Acta Cryst. (2007). E63, m2552-m2553 [doi:10.1107/S1600536807045254]

Dihydroxidobis(melamine-KN)zinc(II) monohydrate

G. Wang, W. Wu and L. Zhuang

Comment

The transition metal complexes are potential photo-luminescent, paramagnetic and radioactive materials due to their attractive photochemical and photophysical properties (Ford *et al.*, 1999). Low dimensional metal organic complexes have received great attention in recent years for their potential applications in optics, electronics, magnetics, biology, catalyst and medicine (Tandon *et al.*, 1994). The ligand, melamine, has both acceptor and donnor atoms suitable for hydrogen bonding and is analogous to nucleobases that may lead to some interesting new chemotherapeutic possibilities (Zhu *et al.*, 1999).

In the complex I, the zinc cation is coordinated by two melamine and two hydroxyl ligands, forming a distorted tetrahedral geometry, while intramolecular N—H···O and N—H···H hydrogen bonds help to stabilize the molecular conformation (Fig. 1). The two melamine rings make a dihedral angle of 86.3 (9) °. All of the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The Zn—N bond lengths (2.021 Å and 2.024 Å) in the title compound are slightly shorter than that (2.039 Å) in the compound [Zn(C₃N₆H₆)(H₂O)_{0.5}Cl₂](C₃N₆H₆)(H₂O) (Yu *et al.*, 2004). The Zn—O bond lengths (2.018 Å) in the compound [Zn(C₃N₆H₆)(H₂O) (Yu *et al.*, 2004).

As can be seen from the packing diagram (Fig. 2), intermolecular N—H···O, N—H···N, O—H.·O and O—H···N hydrogen bonds(Table 1) link the molecules into a three-dimensional network, which may be effective in the stabilization of the crystal structure.

Experimental

A mixture of zinc chloride (0.136 g, 1 mmol), melamine (0.252 g, 2 mmol), and distilled water(8 ml) was heated at 180°C for 4 days in hydrothermal tube. After being cooled to room temperature, colourless block crystals were obtained. Elemental analysis calcd for compound(I): C 19.58%, H 4.40%, N 45.60%; Found: C 19.51%, H 4.35%, N 45.53%.

Refinement

H atoms attached to NH₂ and hydroxyl groups were positioned geometrically (O—H = 0.84 and N—H = 0.86 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(N,O)$. H atoms from water were located in a difference map and refined with distance restraints of O—H = 0.84 \%A and Uĩso~(H) = 1.5U~eq~(O).

Figures

Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids (arbitrary spheres for the H atoms). Intramolecular hydrogen bonds are shown as double dashed lines.

Fig. 2. A packing diagram of complex(I). Hydrogen bonds are shown as dashed lines.

Dihydroxidobis(melamine-κN)zinc(II) monohydrate

Crystal data	
$[Zn(OH)_2(C_3N_6H_6)_2]\cdot H_2O$	$F_{000} = 760$
$M_r = 369.70$	$D_{\rm x} = 1.865 {\rm ~Mg~m}^{-3}$
Orthorhombic, <i>Pna2</i> ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 25 reflections
a = 17.531 (4) Å	$\theta = 9 - 13^{\circ}$
b = 6.6251 (13) Å	$\mu = 1.91 \text{ mm}^{-1}$
c = 11.335 (2) Å	T = 293 (2) K
$V = 1316.5 (5) \text{ Å}^3$	Block, colourless
Z = 4	$0.40 \times 0.40 \times 0.22 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.037$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.1^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.3^{\circ}$
T = 293(2) K	$h = -11 \rightarrow 20$
$\omega/2\theta$ scans	$k = -7 \rightarrow 7$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -13 \rightarrow 11$
$T_{\min} = 0.508, \ T_{\max} = 0.657$	3 standard reflections

every 200 reflections

intensity decay: none

3467 measured reflections1843 independent reflections

1682 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.0759P)^2 + 5.1018P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.143$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
1843 reflections	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$
199 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 636 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.06 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}^*/U_{\rm eq}$
C1	1.0926 (4)	0.8133 (12)	0.2026 (8)	0.0288 (18)
C2	1.2208 (4)	0.9046 (10)	0.1426 (11)	0.0301 (16)
C3	1.1128 (4)	1.1158 (13)	0.0982 (8)	0.032 (2)
C4	0.9359 (4)	0.7899 (13)	-0.0664 (9)	0.0327 (19)
C5	0.8131 (5)	0.6933 (14)	-0.1435 (9)	0.035 (2)
C6	0.8286 (4)	0.9887 (13)	-0.0226 (9)	0.0306 (18)
N1	1.0653 (3)	0.9865 (9)	0.1520 (9)	0.0303 (18)
N2	1.0510 (3)	0.6883 (9)	0.2514 (6)	0.0264 (16)
H2A	1.0026	0.7081	0.2547	0.032*
H2B	1.0705	0.5814	0.2821	0.032*
N3	1.1697 (3)	0.7769 (10)	0.1947 (7)	0.0313 (16)
N4	1.2893 (2)	0.8706 (8)	0.1433 (8)	0.0246 (13)
H4A	1.3205	0.9558	0.1124	0.030*
H4B	1.3064	0.7614	0.1747	0.030*
N5	1.1901 (4)	1.0702 (10)	0.0957 (7)	0.0319 (17)
N6	1.0884 (4)	1.2648 (11)	0.0488 (7)	0.039 (2)

supplementary materials

1.0402	1.2885	0.0479	0.046*
1.1193	1.3467	0.0145	0.046*
0.9038 (4)	0.9458 (10)	-0.0072 (7)	0.0242 (17)
1.0043 (3)	0.7584 (11)	-0.0641 (8)	0.041 (2)
1.0338	0.8362	-0.0240	0.050*
1.0232	0.6582	-0.1025	0.050*
0.8892 (4)	0.6602 (11)	-0.1310 (7)	0.0329 (17)
0.7718 (4)	0.5743 (10)	-0.1966 (7)	0.0318 (17)
0.7239	0.5988	-0.2035	0.038*
0.7909	0.4665	-0.2269	0.038*
0.7853 (4)	0.8644 (11)	-0.0947 (7)	0.0338 (16)
0.7985 (3)	1.1327 (10)	0.0259 (7)	0.0333 (18)
0.8250	1.2100	0.0711	0.040*
0.7509	1.1568	0.0149	0.040*
0.9360 (3)	1.3630 (9)	0.1356 (11)	0.0580 (17)
0.9357	1.4061	0.2053	0.087*
0.8931 (5)	0.9344 (13)	0.2726 (9)	0.051 (3)
0.9153	0.9581	0.3368	0.077*
0.8689 (4)	0.4538 (10)	0.3936 (8)	0.053 (2)
0.8521	0.3534	0.4307	0.080*
0.8286	0.4959	0.3620	0.080*
0.95397 (4)	1.06209 (11)	0.13850 (11)	0.0287 (3)
	1.0402 1.1193 0.9038 (4) 1.0043 (3) 1.0338 1.0232 0.8892 (4) 0.7718 (4) 0.7239 0.7909 0.7853 (4) 0.7985 (3) 0.8250 0.7509 0.9360 (3) 0.9357 0.8931 (5) 0.9153 0.8689 (4) 0.8521 0.8286 0.95397 (4)	1.0402 1.2885 1.1193 1.3467 0.9038 (4) 0.9458 (10) 1.0043 (3) 0.7584 (11) 1.0338 0.8362 1.0232 0.6582 0.8892 (4) 0.6602 (11) 0.7718 (4) 0.5743 (10) 0.7239 0.5988 0.7909 0.4665 0.7853 (4) 0.8644 (11) 0.7985 (3) 1.1327 (10) 0.8250 1.2100 0.7509 1.568 0.9360 (3) 1.3630 (9) 0.9357 1.4061 0.8931 (5) 0.9344 (13) 0.9153 0.9581 0.8689 (4) 0.4538 (10) 0.8521 0.3534 0.8286 0.4959 0.95397 (4) 1.06209 (11)	1.0402 1.2885 0.0479 1.1193 1.3467 0.0145 0.9038 (4) 0.9458 (10) -0.0072 (7) 1.0043 (3) 0.7584 (11) -0.0641 (8) 1.0338 0.8362 -0.0240 1.0232 0.6582 -0.1025 0.8892 (4) 0.6602 (11) -0.1310 (7) 0.7718 (4) 0.5743 (10) -0.1966 (7) 0.7239 0.5988 -0.2035 0.7909 0.4665 -0.2269 0.7853 (4) 0.8644 (11) -0.0947 (7) 0.7985 (3) 1.1327 (10) 0.0259 (7) 0.8250 1.2100 0.0711 0.7509 1.568 0.0149 0.9360 (3) 1.3630 (9) 0.1356 (11) 0.9357 1.4061 0.2053 0.8931 (5) 0.9344 (13) 0.2726 (9) 0.9153 0.9581 0.3368 0.8689 (4) 0.4538 (10) 0.3936 (8) 0.8521 0.3534 0.4307 0.8286 0.4959 0.3620 0.95397 (4) 1.06209 (11) 0.13850 (11)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.026 (4)	0.027 (4)	0.033 (5)	0.005 (3)	-0.001 (3)	-0.006 (4)
C2	0.029 (3)	0.030 (4)	0.031 (4)	-0.006 (3)	-0.012 (5)	0.002 (5)
C3	0.026 (4)	0.037 (4)	0.032 (5)	-0.001 (3)	0.005 (3)	-0.003 (4)
C4	0.028 (4)	0.033 (4)	0.037 (5)	0.003 (3)	0.001 (4)	-0.005 (4)
C5	0.036 (4)	0.032 (5)	0.038 (5)	0.004 (4)	0.001 (4)	-0.0041 (4)
C6	0.025 (4)	0.035 (4)	0.033 (5)	0.005 (3)	-0.008 (3)	0.000 (4)
N1	0.020 (2)	0.029 (3)	0.042 (5)	-0.004 (2)	-0.002 (4)	0.009 (4)
N2	0.015 (3)	0.021 (3)	0.043 (4)	0.002 (3)	0.007 (3)	0.018 (3)
N3	0.022 (3)	0.027 (3)	0.045 (4)	-0.002 (3)	0.003 (3)	0.009 (3)
N4	0.009 (2)	0.019 (3)	0.047 (4)	0.0011 (18)	0.008 (4)	0.004 (4)
N5	0.026 (3)	0.034 (4)	0.036 (4)	-0.001 (3)	0.002 (3)	0.010 (3)
N6	0.018 (3)	0.025 (4)	0.043 (5)	0.004 (3)	0.011 (3)	0.018 (4)
N7	0.020 (3)	0.028 (4)	0.025 (5)	0.002 (3)	-0.003 (3)	-0.008 (3)
N8	0.020 (3)	0.040 (4)	0.064 (6)	0.008 (3)	-0.004 (3)	-0.036 (4)
N9	0.028 (3)	0.035 (4)	0.035 (4)	0.003 (3)	-0.001 (3)	-0.012 (4)
N10	0.021 (3)	0.029 (3)	0.045 (5)	0.000 (3)	-0.008 (3)	-0.022 (3)
N11	0.028 (3)	0.033 (4)	0.040 (4)	0.004 (3)	0.002 (3)	-0.010 (4)
N12	0.021 (3)	0.034 (4)	0.054 (5)	0.010 (3)	-0.009 (3)	-0.031 (4)
01	0.057 (3)	0.046 (3)	0.071 (5)	0.007 (3)	0.000 (6)	0.009 (6)
O2	0.055 (5)	0.047 (6)	0.062 (7)	-0.011 (4)	0.005 (4)	0.002 (5)
03	0.032 (3)	0.058 (4)	0.069 (5)	0.005 (3)	-0.008 (3)	-0.021 (4)
Zn1	0.0224 (4)	0.0304 (5)	0.0334 (5)	0.0006 (3)	-0.0005 (5)	-0.0012 (6)

Geometric parameters (Å, °)

C1—N2	1.234 (10)	N2—H2A	0.8600
C1—N1	1.369 (11)	N2—H2B	0.8600
C1—N3	1.377 (10)	N4—H4A	0.8600
C2—N4	1.222 (8)	N4—H4B	0.8600
C2—N5	1.334 (10)	N6—H6A	0.8600
C2—N3	1.366 (10)	N6—H6B	0.8600
C3—N6	1.213 (11)	N7—Zn1	2.024 (8)
C3—N1	1.341 (11)	N8—H8A	0.8600
C3—N5	1.389 (10)	N8—H8B	0.8600
C4—N8	1.217 (10)	N10—H10A	0.8600
C4—N7	1.354 (11)	N10—H10B	0.8600
C4—N9	1.395 (11)	N12—H12A	0.8600
C5—N10	1.227 (11)	N12—H12B	0.8600
C5—N11	1.353 (12)	O1—Zn1	2.018 (6)
C5—N9	1.359 (11)	O1—H1	0.8396
C6—N12	1.221 (11)	O2—Zn1	2.041 (10)
C6—N7	1.360 (11)	O2—H2	0.8400
C6—N11	1.387 (11)	О3—НЗА	0.8396
N1—Zn1	2.021 (6)	O3—H3B	0.8399
N2—C1—N1	122.9 (7)	C2—N5—C3	124.4 (7)
N2—C1—N3	119.5 (7)	C3—N6—H6A	120.0
N1—C1—N3	117.6 (7)	C3—N6—H6B	120.0
N4—C2—N5	123.5 (8)	H6A—N6—H6B	120.0
N4—C2—N3	121.9 (7)	C4—N7—C6	119.9 (8)
N5-C2-N3	114.6 (6)	C4—N7—Zn1	121.0 (6)
N6—C3—N1	120.8 (7)	C6—N7—Zn1	116.5 (6)
N6—C3—N5	120.7 (8)	C4—N8—H8A	120.0
N1—C3—N5	118.4 (8)	C4—N8—H8B	120.0
N8—C4—N7	122.0 (8)	H8A—N8—H8B	120.0
N8—C4—N9	119.0 (8)	C5—N9—C4	122.2 (7)
N7—C4—N9	119.0 (7)	C5-N10-H10A	120.0
N10-C5-N11	121.8 (8)	C5-N10-H10B	120.0
N10-C5-N9	121.8 (8)	H10A—N10—H10B	120.0
N11—C5—N9	116.5 (9)	C5—N11—C6	122.8 (7)
N12—C6—N7	121.7 (8)	C6—N12—H12A	120.0
N12—C6—N11	119.5 (7)	C6—N12—H12B	120.0
N7—C6—N11	118.9 (8)	H12A—N12—H12B	120.0
C3—N1—C1	120.6 (6)	Zn1—O1—H1	108.8
C3—N1—Zn1	114.0 (5)	Zn1—O2—H2	109.0
C1—N1—Zn1	125.2 (5)	НЗА—ОЗ—НЗВ	100.5
C1—N2—H2A	120.0	O1—Zn1—N1	113.4 (3)
C1—N2—H2B	120.0	O1—Zn1—N7	107.2 (4)
H2A—N2—H2B	120.0	N1—Zn1—N7	112.8 (3)
C2—N3—C1	124.3 (7)	O1—Zn1—O2	109.8 (4)
C2—N4—H4A	120.0	N1—Zn1—O2	110.2 (4)
C2—N4—H4B	120.0	N7—Zn1—O2	102.9 (3)

supplementary materials

H4A—N4—H4B	120.0		
N6—C3—N1—C1	176.7 (9)	N12—C6—N7—Zn1	21.0 (12)
N5—C3—N1—C1	-0.4 (14)	N11—C6—N7—Zn1	-158.6 (7)
N6—C3—N1—Zn1	1.3 (12)	N10-C5-N9-C4	-177.1 (9)
N5—C3—N1—Zn1	-175.8 (6)	N11-C5-N9-C4	3.0 (13)
N2—C1—N1—C3	-178.8 (9)	N8—C4—N9—C5	-175.8 (9)
N3—C1—N1—C3	-0.8 (14)	N7—C4—N9—C5	4.9 (13)
N2—C1—N1—Zn1	-3.9 (13)	N10-C5-N11-C6	172.1 (9)
N3—C1—N1—Zn1	174.1 (6)	N9-C5-N11-C6	-8.0 (13)
N4—C2—N3—C1	176.1 (10)	N12-C6-N11-C5	-174.5 (9)
N5-C2-N3-C1	-1.6 (15)	N7-C6-N11-C5	5.1 (14)
N2-C1-N3-C2	180.0 (9)	C3—N1—Zn1—O1	-33.1 (9)
N1-C1-N3-C2	1.8 (14)	C1—N1—Zn1—O1	151.7 (8)
N4—C2—N5—C3	-177.3 (10)	C3—N1—Zn1—N7	88.9 (7)
N3—C2—N5—C3	0.4 (15)	C1—N1—Zn1—N7	-86.3 (9)
N6—C3—N5—C2	-176.5 (10)	C3—N1—Zn1—O2	-156.7 (7)
N1—C3—N5—C2	0.5 (14)	C1—N1—Zn1—O2	28.1 (9)
N8—C4—N7—C6	172.8 (10)	C4—N7—Zn1—O1	143.5 (7)
N9—C4—N7—C6	-8.0 (13)	C6—N7—Zn1—O1	-54.9 (7)
N8—C4—N7—Zn1	-26.2 (13)	C4—N7—Zn1—N1	18.0 (8)
N9—C4—N7—Zn1	153.0 (7)	C6—N7—Zn1—N1	179.6 (6)
N12—C6—N7—C4	-177.2 (9)	C4—N7—Zn1—O2	-100.7 (7)
N11—C6—N7—C4	3.2 (13)	C6—N7—Zn1—O2	60.9 (7)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
0.86	2.44	3.221 (11)	151
0.86	2.01	2.865 (9)	174
0.86	2.37	3.120 (8)	146
0.86	2.29	3.089 (11)	156
0.86	2.14	2.921 (10)	151
0.86	1.91	2.670 (9)	146
0.86	2.30	3.070 (12)	150
0.86	2.03	2.674 (9)	131
0.86	2.34	3.057 (11)	141
0.86	1.97	2.826 (9)	176
0.86	2.31	3.111 (10)	155
0.86	2.29	2.849 (9)	123
0.84	2.46	3.209 (14)	150
0.84	2.60	3.288 (10)	139
0.84	2.43	2.770 (9)	105
0.84	2.23	2.770 (9)	122
	D—H 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	D —H $H \cdots A$ 0.86 2.44 0.86 2.01 0.86 2.37 0.86 2.29 0.86 2.14 0.86 1.91 0.86 2.30 0.86 2.33 0.86 2.34 0.86 2.31 0.86 2.29 0.86 2.29 0.86 2.29 0.84 2.60 0.84 2.43 0.84 2.23	D—HH···A D ···A0.862.443.221 (11)0.862.012.865 (9)0.862.373.120 (8)0.862.293.089 (11)0.862.142.921 (10)0.861.912.670 (9)0.862.303.070 (12)0.862.343.057 (11)0.862.313.111 (10)0.862.292.849 (9)0.862.292.849 (9)0.842.603.288 (10)0.842.432.770 (9)0.842.232.770 (9)

Symmetry codes: (i) -*x*+2, -*y*+1, *z*+1/2; (ii) *x*+1/2, -*y*+5/2, *z*; (iii) *x*+1/2, -*y*+3/2, *z*; (iv) -*x*+2, -*y*+2, *z*-1/2; (v) -*x*+2, -*y*+1, *z*-1/2; (vi) -*x*+3/2, *y*-1/2, *z*-1/2; (vii) *x*-1/2, -*y*+5/2, *z*; (viii) *x*, *y*+1, *z*; (ix) -*x*+2, -*y*+2, *z*+1/2; (x) -*x*+3/2, *y*-1/2, *z*+1/2.

Fig. 2

